MLOCK(2) Linux Programmers Manual MLOCK(2)
NAME
mlock, munlock, mlockall, munlockall - lock and unlock memory
SYNOPSIS
#include
int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);
int mlockall(int flags);
int munlockall(void);
DESCRIPTION
mlock() and mlockall() respectively lock part or all of the calling
processs virtual address space into RAM, preventing that memory from
being paged to the swap area. munlock() and munlockall() perform the
converse operation, respectively unlocking part or all of the calling
processs virtual address space, so that pages in the specified virtual
address range may once more to be swapped out if required by the kernel
memory manager. Memory locking and unlocking are performed in units of
whole pages.
mlock() and munlock()
mlock() locks pages in the address range starting at addr and continu
ing for len bytes. All pages that contain a part of the specified
address range are guaranteed to be resident in RAM when the call
returns successfully; the pages are guaranteed to stay in RAM until
later unlocked.
munlock() unlocks pages in the address range starting at addr and con
tinuing for len bytes. After this call, all pages that contain a part
of the specified memory range can be moved to external swap space again
by the kernel.
mlockall() and munlockall()
mlockall() locks all pages mapped into the address space of the calling
process. This includes the pages of the code, data and stack segment,
as well as shared libraries, user space kernel data, shared memory, and
memory-mapped files. All mapped pages are guaranteed to be resident in
RAM when the call returns successfully; the pages are guaranteed to
stay in RAM until later unlocked.
The flags argument is constructed as the bitwise OR of one or more of
the following constants:
MCL_CURRENT Lock all pages which are currently mapped into the address
space of the process.
MCL_FUTURE Lock all pages which will become mapped into the address
space of the process in the future. These could be for
instance new pages required by a growing heap and stack as
well as new memory mapped files or shared memory regions.
If MCL_FUTURE has been specified, then a later system call (e.g.,
mmap(2), sbrk(2), malloc(3)), may fail if it would cause the number of
locked bytes to exceed the permitted maximum (see below). In the same
circumstances, stack growth may likewise fail: the kernel will deny
stack expansion and deliver a SIGSEGV signal to the process.
munlockall() unlocks all pages mapped into the address space of the
calling process.
RETURN VALUE
On success these system calls return 0. On error, -1 is returned,
errno is set appropriately, and no changes are made to any locks in the
address space of the process.
ERRORS
ENOMEM (Linux 2.6.9 and later) the caller had a non-zero RLIMIT_MEMLOCK
soft resource limit, but tried to lock more memory than the
limit permitted. This limit is not enforced if the process is
privileged (CAP_IPC_LOCK).
ENOMEM (Linux 2.4 and earlier) the calling process tried to lock more
than half of RAM.
EPERM (Linux 2.6.9 and later) the caller was not privileged
(CAP_IPC_LOCK) and its RLIMIT_MEMLOCK soft resource limit was 0.
EPERM (Linux 2.6.8 and earlier) The calling process has insufficient
privilege to call munlockall(). Under Linux the CAP_IPC_LOCK
capability is required.
For mlock() and munlock():
EINVAL len was negative.
EINVAL (Not on Linux) addr was not a multiple of the page size.
ENOMEM Some of the specified address range does not correspond to
mapped pages in the address space of the process.
For mlockall():
EINVAL Unknown flags were specified.
For munlockall():
EPERM (Linux 2.6.8 and earlier) The caller was not privileged
(CAP_IPC_LOCK).
CONFORMING TO
POSIX.1-2001, SVr4.
AVAILABILITY
On POSIX systems on which mlock() and munlock() are available,
_POSIX_MEMLOCK_RANGE is defined in and the number of bytes
in a page can be determined from the constant PAGESIZE (if defined) in
or by calling sysconf(_SC_PAGESIZE).
On POSIX systems on which mlockall() and munlockall() are available,
_POSIX_MEMLOCK is defined in to a value greater than 0.
(See also sysconf(3).)
NOTES
Memory locking has two main applications: real-time algorithms and
high-security data processing. Real-time applications require deter
ministic timing, and, like scheduling, paging is one major cause of
unexpected program execution delays. Real-time applications will usu
ally also switch to a real-time scheduler with sched_setscheduler(2).
Cryptographic security software often handles critical bytes like pass
words or secret keys as data structures. As a result of paging, these
secrets could be transferred onto a persistent swap store medium, where
they might be accessible to the enemy long after the security software
has erased the secrets in RAM and terminated. (But be aware that the
suspend mode on laptops and some desktop computers will save a copy of
the systems RAM to disk, regardless of memory locks.)
Real-time processes that are using mlockall() to prevent delays on page
faults should reserve enough locked stack pages before entering the
time-critical section, so that no page fault can be caused by function
calls. This can be achieved by calling a function that allocates a
sufficiently large automatic variable (an array) and writes to the mem
ory occupied by this array in order to touch these stack pages. This
way, enough pages will be mapped for the stack and can be locked into
RAM. The dummy writes ensure that not even copy-on-write page faults
can occur in the critical section.
Memory locks are not inherited by a child created via fork(2) and are
automatically removed (unlocked) during an execve(2) or when the pro
cess terminates.
The memory lock on an address range is automatically removed if the
address range is unmapped via munmap(2).
Memory locks do not stack, that is, pages which have been locked sev
eral times by calls to mlock() or mlockall() will be unlocked by a sin
gle call to munlock() for the corresponding range or by munlockall().
Pages which are mapped to several locations or by several processes
stay locked into RAM as long as they are locked at least at one loca
tion or by at least one process.
Linux Notes
Under Linux, mlock() and munlock() automatically round addr down to the
nearest page boundary. However, POSIX.1-2001 allows an implementation
to require that addr is page aligned, so portable applications should
ensure this.
Limits and permissions
In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK)
in order to lock memory and the RLIMIT_MEMLOCK soft resource limit
defines a limit on how much memory the process may lock.
Since Linux 2.6.9, no limits are placed on the amount of memory that a
privileged process can lock and the RLIMIT_MEMLOCK soft resource limit
instead defines a limit on how much memory an unprivileged process may
lock.
BUGS
In the 2.4 series Linux kernels up to and including 2.4.17, a bug
caused the mlockall() MCL_FUTURE flag to be inherited across a fork(2).
This was rectified in kernel 2.4.18.
Since kernel 2.6.9, if a privileged process calls mlockall(MCL_FUTURE)
and later drops privileges (loses the CAP_IPC_LOCK capability by, for
example, setting its effective UID to a non-zero value), then subse
quent memory allocations (e.g., mmap(2), brk(2)) will fail if the
RLIMIT_MEMLOCK resource limit is encountered.
SEE ALSO
mmap(2), setrlimit(2), shmctl(2), sysconf(3), capabilities(7)
COLOPHON
This page is part of release 3.05 of the Linux man-pages project. A
description of the project, and information about reporting bugs, can
be found at http://www.kernel.org/doc/man-pages/.
Linux 2006-02-04 MLOCK(2)
|